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In this paper, we present a new numerical algorithm combining the dual interpolation boundary face method 

(DiBFM) with the precise integration method for solving the 2D transient heat conduction problem. In this new 

combined approach, the transient heat conduction problem is transformed from an initial boundary value prob- 

lem to an initial value problem through a dual interpolation boundary face approach. This approach merges the 

conforming and nonconforming elements in the BFM implementation. Potentials and fluxes are approximated 

by the dual interpolation elements which include source and virtual points. Employing the moving-least-square 

approximation help to construct the constraint equations relating to virtual points. Then the analytical solution 

of the problem can be expressed by the matrix exponential function (MEF), which can be computed accurately 

through a precise integration method (PIM). The proposed numerical algorithm has been successfully imple- 

mented. Several numerical examples are given to illustrate the numerical accuracy and stability of the proposed 

method compared with the traditional precise integration boundary face method. 
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. Introduction 

One of the most common practical problems is the transient heat
ransfer problem. The current numerical calculation methods for this
roblem include the finite difference method (FDM) [1] , the finite
olume method (FVM) [2] , the finite element method (FEM) [3] , the
oundary element method (BEM) [4] and the boundary face method
BFM) [5] .In these numerical tools, the BEM is more superior to others
or its semi-analytical feature and advantage in using the discontinuous
lements. This makes the numerical results more accurate and the mesh
eneration a less time-consuming and effective process. The same as
EM, BFM is developed on the basis of the boundary integral equation
BIE), but by making full use of the boundary representation data
tructure in the Computer Aided Design (CAD) package directly, the
omputational model inherits all geometric data from CAD geometries.

In macroscopic level, the BEM implementation of transient heat con-
uction problem is categorized into two kinds: the transformed do-
ain method [6-7] and the time domain method [8-10] . The trans-

ormed domain schemecan yield higher computational accuracy, how-
ver, there are two defects in this method: (i) The numerical inverse
aplace transformation is not conducive to large-scale calculation, for it
equires much more computational efforts; (ii) The accuracy of the re-
ult depends on the determination of transformation parameters. Hence
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he transformed domain method’s application and promotion is very
ifficult. 

In this paper, the time domain method is studied. The time do-
ain methods can be further subdivided into two categories: In one

ategory of this numerical scheme, the time-independent fundamen-
al solution, which is usually used to solve steady-state heat transfer
roblems, is employed, and the other one implements with the time-
ependent fundamental solution. The numerical approach applying the
ime-dependent fundamental solution was proposed by Thaler et al.
11] , Brebbia [12] classified this approach into two numerical algo-
ithms: convolution quadrature method (CQM) and quasi-initial con-
ition method, respectively. CQM’s each step of calculation needs to
onsider physical variables from initial time to current time step. While
n quasi-initial condition method, the present moment’s numerical re-
ult only considers the previous time step’s physical variable which is
sed as the initial boundary condition in the current time step. 

In the numerical approach with time-independent fundamental so-
ution, Zhou firstly takes the transient heat transfer problem as a quasi-
teady state problem, and the time derivativeis treated as the equivalent
eat source [13] . In Zhou’s work, the transient heat transfer problem is
ransformed from an initial boundary value problem into an initial value
roblem through a dual reciprocity boundary element algorithm which
mplements with the steady-state fundamental solution, the PIM, which
ember 2020 
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a  
Nomenclature 

𝜉, 𝜂 The local natural coordinates of a 2D dual interpo- 
lation element 

d Offset 
n 𝛼 The number of source points in the dual interpola- 

tion element 
n 𝛽 The number of virtual points in the dual interpola- 

tion element 
𝑁 

𝑠 
𝛼
( 𝜉) Shape function of the 𝛼th source point in the dual 

interpolation element 
𝑢 ( 𝑄 

𝑠 
𝛼
) Potential of the 𝛼th source point in the dual interpo- 

lation element 
𝑞( 𝑄 

𝑠 
𝛼
) Normal flux of the 𝛼th source point in the dual in- 

terpolation element 
𝑁 

𝑣 
𝛽
( 𝜉) Shape function of the 𝛽th source point in the dual 

interpolation element 
𝑢 ( 𝑄 

𝑣 
𝛽
) Potential of the 𝛽th source point in the dual interpo- 

lation element 
𝑞( 𝑄 

𝑣 
𝛽
) Normal flux of the 𝛽th source point in the dual inter- 

polation elemen 
M 

𝛽 The number of source points that are within the in- 
fluential area of virtual point 

𝜙𝑣𝑠 
𝑚 
( 𝜉𝑣 

𝛽
) The MLS interpolation shape function affiliated with 

source point 
𝜉𝑣 
𝛽

The parameter space’s coordinate of virtual point 
Γu The boundary of Dirichlet type 
Γq The boundary of Neumann type 
�̄� ( 𝐱, 𝑡 ) Prescribed temperature on Γu 

𝑞 ( 𝐱, 𝑡 ) Prescribed normal flux on Γq 

u 0 ( x ) Prescribed temperature in 2-D domain Ω at initial 
time 

�̇� ( 𝐱, 𝑡 ) The first derivatives of the u ( x , t )versus time vari- 
able t 

u ∗ ( y, x ) The time-independent fundamental solution 
𝑘 

𝜕 𝑢 ∗ ( 𝐲, 𝐱 ) 
𝜕𝑛 ( 𝐱) The derivative of u ∗ ( y, x )versus normal vector n 

Q The heat source inside the considered domain 
k Heat conductivity 
𝜌 Density 
c Heat capacity 
𝚿𝑣𝑠 

𝑛𝑛 
, 𝚯𝑣𝑠 

𝑑𝑑 
, 𝚽vs Shape function matrices acquired by the MLS ap- 

proximation 
Δt Time step length 

s firstly presented by Zhong et al. to solve structural dynamics [14] , is
ventually employed to calculate the initial value problem accurately. 

The recently proposed dual interpolation boundary face method
DiBFM) [15-18] has been demonstrated the higher accuracy and
fficiency compared with the traditional boundary element method.
hose advantages are mainly based on two reasons: (i) Compared to
onventional discontinuous elements, the dual interpolation elements
n DiBFM improve the interpolation accuracy by two orders. (ii) DiBFM
liminate geometry error since the integrand quantities are calculated
irectly from the curves rather than from elements. In this new proposed
lgorithm, the boundary physical variables are interpolated by the
ual interpolation elements which contains source points and virtual
oints. In addition, it should be mentioned that we employ the MLS
pproximation to construct the constraint equations relating to virtual
oints. Thus, compared with the traditional BEM, the DiBFM largely
mproves the accuracy and efficiency. Considering the advantages of
he precise integration method [13] in accuracy and stability, it is
atural to extend this scheme to the dual interpolation BFM. 

In this paper, we present a new numerical scheme combining the
ual interpolation boundary face method (DiBFM) with the precise
76 
ntegration method for solving the 2D transient heat conduction
roblem. This paper’s primary contributions are as follows: (i) While
atisfy the precondition of the same time step, this new method is more
ccurate than the traditional precise integration boundary face method;
ii) unlike the numerical method with time-dependent fundamental so-
ution which has the numerically instability phenomenon, this coupled
ethod still exhibits accuracy and stability when the time step length

ecomes smaller and smaller. 
The article is divided into six sections: In Section 2 , we describe the

ual interpolation method with MLS approximation. In Section 3 , the
quations of the DiBFM for transient heat conduction problems are pre-
ented. In Section 4 , we describe the PIM for previous section’s equation
n detail. In Section 5 , results of several numerical examples are given
o illustrate the superiority of the proposed method in dealing with 2-D
ransient heat conduction problems. In Section 6, we close with some
iscussions and conclusions. 

. Dual interpolation method with MLS approximation 

The first-layer interpolation for boundary variables and the second-
ayer interpolation for virtual points are introduced in this section. 

.1. Dual interpolation element 

The DiBFM’s elements shown in Figs. 1 and 2 are called the 2D
ual interpolation element. This new interpolation element contains the
ource ( s i ) and virtual ( v i ) points. The virtual points help to improve the
nterpolation accuracy, however, they are not treated as the collocation
oints, and the degrees of freedom associated with this kind of points
re compressed by constraint equations which are constructed through
LS approximation. Thus, the 2D dual interpolation elements have po-

entiality to unify the 2D continuous and discontinuous elements. The
hape functions for S1, S2, S3 in Fig. 1 and TS1 in Fig. 2 are given by
q. (1 - 3 ) and Eq. (4) , the shape functions for TS2 and TS3 can be for-
ulated in the same way as the standard elements of BEM. 

S1, S2, S3 elements’ shape functions: 

 

𝑠 
1 ( 𝜉) = (1 + 𝜉)(1 − 𝜉) and 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑁 

𝑣 
1 ( 𝜉) = 

1 
2 
𝜉( 𝜉 − 1) 

𝑁 

𝑣 
2 ( 𝜉) = 

1 
2 
𝜉( 𝜉 + 1) 

(1)

 

 

 

 

 

 

 

𝑁 

𝑠 
1 ( 𝜉) = 

[ 𝜉 − (1 − 𝑑) ] ( 𝜉 + 1)( 𝜉 − 1) 
2 𝑑(1 − 𝑑)(2 − 𝑑) 

𝑁 

𝑠 
2 ( 𝜉) = − 

[ 𝜉 + (1 − 𝑑) ] ( 𝜉 + 1)( 𝜉 − 1) 
2 𝑑(1 − 𝑑)(2 − 𝑑) 

and 

 

 

 

 

 

 

 

𝑁 

𝑣 
1 ( 𝜉) = − 

[ 𝜉 + (1 − 𝑑) ] [ 𝜉 − (1 − 𝑑) ] ( 𝜉 − 1) 
2 𝑑(2 − 𝑑) 

𝑁 

𝑣 
2 ( 𝜉) = 

[ 𝜉 + (1 − 𝑑) ] [ 𝜉 − (1 − 𝑑) ] ( 𝜉 + 1) 
2 𝑑(2 − 𝑑) 

(2) 

 

 

 

 

 

 

 

 

 

𝑁 

𝑠 
1 ( 𝜉) = − 

[ 𝜉 − (1 − 𝑑) ] ( 𝜉 + 1)( 𝜉 − 1) 𝜉
2 𝑑(2 − 𝑑) (1 − 𝑑) 2 

𝑁 

𝑠 
2 ( 𝜉) = 

[ 𝜉 + (1 − 𝑑) ] [ 𝜉 − (1 − 𝑑) ] ( 𝜉 + 1)( 𝜉 − 1) 
(1 − 𝑑) 2 

𝑁 

𝑠 
3 ( 𝜉) = − 

[ 𝜉 + (1 − 𝑑) ] ( 𝜉 + 1)( 𝜉 − 1) 𝜉
2 𝑑(2 − 𝑑) (1 − 𝑑) 2 

and 

 

 

 

 

 

 

 

𝑁 

𝑣 
1 ( 𝜉) = 

[ 𝜉 + (1 − 𝑑) ] [ 𝜉 − (1 − 𝑑) ] ( 𝜉 − 1) 𝜉
2 𝑑(2 − 𝑑) 

𝑁 

𝑣 
2 ( 𝜉) = 

[ 𝜉 + (1 − 𝑑) ] [ 𝜉 − (1 − 𝑑) ] ( 𝜉 + 1) 𝜉
2 𝑑(2 − 𝑑) 

(3) 

The independent variable 𝜉 denotes the local natural coordinates of
 2D dual interpolation element, and the upper and lower bounds of 𝜉 is
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Fig. 1. The 2D dual interpolation line ele- 

ments: (a) S1, (b) S2, and (c) S3. 

Fig. 2. The 2D dual interpolation triangle elements: (a) TS1, (b) TS2, and (c) TS3. 
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 − 1,1], where the offset d is taken to be 1 4 in this paper, the offset d is an
mpirical data, according to Ref. [19] , the ‘best’ parameter d should be
etween 0.2 and 0.25. The details of these shape functions, which are
omposed of Lagrangian interpolation formulation, can be found in the
revious work in Ref. [19] . 

TS1 element’s shape function: {
𝑁 

𝑠 
1 ( 𝜉, 𝜂) = 27 𝜉𝜂(1 − 𝜉 − 𝜂) and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑁 

𝑣 
1 ( 𝜉, 𝜂) = 0 . 5(3 𝜉 − 1)(3 𝜉 − 2) 𝜉

𝑁 

𝑣 
2 ( 𝜉, 𝜂) = 0 . 5(3 𝜂 − 1)(3 𝜂 − 2) 𝜂

𝑁 

𝑣 
3 ( 𝜉, 𝜂) = 0 . 5(2 − 3 𝜉 − 3 𝜂)(1 − 3 𝜉 − 3 𝜂)(1 − 𝜉 − 𝜂) 

𝑁 

𝑣 
4 ( 𝜉, 𝜂) = 4 . 5 𝜉𝜂(3 𝜉 − 1) 

𝑁 

𝑣 
5 ( 𝜉, 𝜂) = 4 . 5 𝜉𝜂(3 𝜂 − 1) 

𝑁 

𝑣 
6 ( 𝜉, 𝜂) = 4 . 5 𝜂(1 − 𝜉 − 𝜂)(3 𝜂 − 1) 

𝑁 

𝑣 
7 ( 𝜉, 𝜂) = 4 . 5 𝜂(1 − 𝜉 − 𝜂)(2 − 3 𝜉 − 3 𝜂) 

𝑁 

𝑣 
8 ( 𝜉, 𝜂) = 4 . 5 𝜉(1 − 𝜉 − 𝜂)(2 − 3 𝜉 − 3 𝜂) 

𝑁 

𝑣 
9 ( 𝜉, 𝜂) = 4 . 5 𝜉(1 − 𝜉 − 𝜂)(3 𝜉 − 1) 

(4) 

The independent variable 𝜉 and 𝜂 denote the local natural coordi-
ates, and the upper and lower bounds of 𝜉 and 𝜂 is [0,1]. 

.2. First-layer interpolation for boundary variables 

For two-dimensionaltransient heat transfer problem, the boundary
hysical variables u and q are interpolated by 2D dual interpolation
lement (first-layer interpolation): 

 ( 𝑥 1 , 𝑥 2 ) = 𝑢 ( 𝜉) = 

𝑛 𝛼∑
𝛼=1 

𝑁 

𝑠 
𝛼
( 𝜉) 𝑢 ( 𝑄 

𝑠 
𝛼
) + 

𝑛 𝛽∑
𝛽=1 

𝑁 

𝑣 
𝛽
( 𝜉) 𝑢 ( 𝑄 

𝑣 
𝛽
) , (5)

 

(
𝑥 1 , 𝑥 2 

)
= 𝑞( 𝜉) = 

𝑛 𝛼∑
𝛼=1 

𝑁 

𝑠 
𝛼
( 𝜉) 𝑞( 𝑄 

𝑠 
𝛼
) + 

𝑛 𝛽∑
𝛽=1 

𝑁 

𝑣 
𝛽
( 𝜉) 𝑞( 𝑄 

𝑣 
𝛽
) , (6)

here n 𝛼 and n 𝛽 are the number of source and virtual points in the dual
nterpolation element. 𝑁 

𝑠 
𝛼
( 𝜉) , 𝑢 ( 𝑄 

𝑠 
𝛼
) and 𝑞( 𝑄 

𝑠 
𝛼
) are the shape function, po-

ential and normal flux of the 𝛼th source point in the dual interpola-
ion element. 𝑁 

𝑣 
𝛽
( 𝜉) , 𝑢 ( 𝑄 

𝑣 
𝛽
) and 𝑞( 𝑄 

𝑣 
𝛽
) are the shape function, potential

nd flux of the 𝛽th virtual point. In this paper, the virtual nodal parame-
ers 𝑢 ( 𝑄 

𝑣 
𝛽
) and 𝑞( 𝑄 

𝑣 
𝛽
) are dependent on physical variables of source points,

LS is employed for the second layer approximation to construct their
elations. 
𝑢

77 
.3. Second-layer interpolation for virtual nodes 

We use the MLS approximation to obtain the u and q of virtual points.
he physical variables u and q of virtual points are approximated as
ollows: 

 

(
𝑄 

𝑣 
𝛽

)
= 

𝑀 

𝛽∑
𝑚 =1 

𝜙𝑣𝑠 
𝑚 

(
𝜉𝑣 
𝛽

)
𝑢 

(
𝑄 

𝑠 
𝑚 ( 𝛽) 

)
, (7)

 

(
𝑄 

𝑣 
𝛽

)
= 

𝑀 

𝛽∑
𝑚 =1 

𝜙𝑣𝑠 
𝑚 

(
𝜉𝑣 
𝛽

)
𝑞 

(
𝑄 

𝑠 
𝑚 ( 𝛽) 

)
, (8)

here M 

𝛽denotes the number of source points 𝑄 

𝑠 
𝑚 ( 𝛽) that are within the

nfluential area of virtual point 𝑄 

𝑣 
𝛽
, 𝜙𝑣𝑠 

𝑚 
( 𝜉𝑣 

𝛽
) is the MLS interpolation shape

unction affiliated with source point 𝑄 

𝑠 
𝑚 ( 𝛽) , 𝑢 ( 𝑄 

𝑠 
𝑚 ( 𝛽) ) and 𝑞( 𝑄 

𝑠 
𝑚 ( 𝛽) ) are tem-

erature and normal flux of source point 𝑄 

𝑠 
𝑚 ( 𝛽) , and the 𝜉𝑣 

𝛽
is the pa-

ameter space’s coordinate of virtual point 𝑄 

𝑣 
𝛽
. The details of the MLS

pproximation and the interpolation functions in Eqs. (7) , (8) can be
ound in the previous work in Ref. [19] and Ref. [20] . 

Substituting Eq. (7) into Eq. (5) leads to the equation of the temper-
ture u: 

 ( 𝜉) = 

𝑛𝛼∑
𝛼=1 

𝑁 

𝑠 
𝛼
( 𝜉) 𝑢 
(
𝑄 

𝑠 
𝛼

)
+ 

𝑛𝛽∑
𝛽=1 

𝑀 

𝛽∑
𝑚 =1 

𝑁 

𝑣 
𝛽
( 𝜉) 𝜙𝑣𝑠 

𝑚 

(
𝜂𝑣 
𝛽

)
𝑢 

(
𝑄 

𝑠 
𝑚 ( 𝛽) 

)
(9)

nd substituting Eq. (8) into Eq. (6) leads to the equationof the normal
ux q: 

( 𝜉) = 

𝑛𝛼∑
𝛼=1 

𝑁 

𝑠 
𝛼
( 𝜉) 𝑞 
(
𝑄 

𝑠 
𝛼

)
+ 

𝑛𝛽∑
𝛽=1 

𝑀 

𝛽∑
𝑚 =1 

𝑁 

𝑣 
𝛽
( 𝜉) 𝜙𝑣𝑠 

𝑚 

(
𝜂𝑣 
𝛽

)
𝑞 

(
𝑄 

𝑠 
𝑚 ( 𝛽) 

)
(10)

. DiBFM for transient heat conduction problem 

Consider the transient heat conduction problem in the 2-D domain
which is enclosed by the boundary Γ = Γu + Γq . The problem in ho-
ogeneous media is expressed as: 

𝑘 

𝜌𝑐 
∇ 

2 𝑢 ( 𝐱, 𝑡 ) + 

𝑄 ( 𝐱, 𝑡 ) 
𝜌𝑐 

= �̇� ( 𝐱, 𝑡 ) , ∀𝑥 ∈ Ω

 ( 𝐱, 𝑡 ) = �̄� ( 𝐱, 𝑡 ) , ∀𝑥 ∈ Γ𝑢 

 

𝜕𝑢 ( 𝐱, 𝑡 ) 
𝜕𝑛 ( 𝐱 ) 

≡ 𝑞 ( 𝐱, 𝑡 ) = 𝑞 ( 𝐱, 𝑡 ) , ∀𝑥 ∈ Γ𝑞 

 

(
𝐱, 𝑡 0 
)
= 𝑢 0 ( 𝐱 ) , ∀𝑥 ∈ Ω

(11) 
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BB 
here Γu is the boundary of Dirichlet type, Γq is the boundary of Neu-
ann type, �̄� ( 𝐱, 𝑡 ) is prescribed temperature on Γu , 𝑞 ( 𝐱, 𝑡 ) is prescribed
ormal flux on Γq , u 0 ( x ) is prescribed temperature in 2-D domain Ω
t initial time, �̇� ( 𝐱, 𝑡 ) stands for the first derivatives of the u ( x , t )versus
ime variable t . 

In the BEM, by the aid of the time-independent fundamental solution
f a 2-D steady state potential problem, the governing equation of heat
onduction problem can be transformed into the following boundary
ntegral form: 

( 𝐲 ) 𝑢 ( 𝐲 ) + 

1 
𝜌𝑐 ∫Γ

( 
𝑘 
𝜕 𝑢 ∗ ( 𝐲 , 𝐱 ) 
𝜕𝑛 ( 𝐱 ) 

) 
𝑢 ( 𝐱 , 𝑡 ) 𝑑Γ( 𝐱 ) = 

1 
𝜌𝑐 ∫Γ

𝑢 ∗ ( 𝐲 , 𝐱 ) 
( 
𝑘 
𝜕𝑢 ( 𝐱 , 𝑡 ) 
𝜕𝑛 ( 𝐱 ) 

) 
𝑑Γ( 𝐱 )

+ 

1 
𝜌𝑐 ∫Ω

𝑢 ∗ ( 𝐲 , 𝐱 ) 𝑄 ( 𝐲 , 𝐱 ) 𝑑Ω( 𝐱) − ∫Ω
𝑢 ∗ ( 𝐲, 𝐱) ̇𝑢 ( 𝐱, 𝑡 ) 𝑑Ω( 𝐱) (12) 

here the coefficient c( y ) is defined as: 

( 𝐲) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
1 y in the internal domain 
1 
2 

y on the smooth boundary 

0 y in the outer domain 

(13)

here u ( x , t ) and 𝑘 𝜕𝑢 ( 𝐱,𝑡 ) 
𝜕𝑛 ( 𝐱) are the temperature and the normal flux at the

oundary node x . u ∗ ( y, x ) is the time-independent fundamental solu-
ion, and 𝑘 𝜕 𝑢 

∗ ( 𝐲 , 𝐱 ) 
𝜕𝑛 ( 𝐱) is the derivative of u ∗ ( y, x ) versus normal vector n. Q

s the heat source inside the considered domain, k, 𝜌 and c are heat con-
uctivity, density and heat capacity of the material. For 2-D potential
roblems, u ∗ ( y, x ) and q ∗ ( y, x ) are given by: 

 

∗ ( 𝐲 , 𝐱 ) = − 

𝜌𝑐 

2 𝜋𝑘 
ln 𝑟 

 

∗ ( 𝐲 , 𝐱 ) = 𝑘 
𝜕 𝑢 ∗ ( 𝐲 , 𝐱 ) 
𝜕𝑛 ( 𝐱) 

 = |𝐲 − 𝐱 |
(14) 

here r is the linear distance between the source node y and the field
ode x . 

In the DiBFM, the BIEs are only collocated at the source nodes, and
he discretization form of the BIE for transient heat conduction problem
s: 

( 𝐲 ) 𝑢 ( 𝐲 ) + 

1 
𝜌𝑐 

∑
𝑗 

( 
𝑛𝛼∑
𝛼=1 

∫Γ𝑗 

𝑞 ∗ ( 𝐲 , 𝐱 ) 𝑢 ( 𝐱 𝑠 
𝑗 ( 𝛼) , 𝑡 ) 𝑁 

𝑠 
𝑗 ( 𝛼) ( 𝐱 ) 𝑑Γ( 𝐱 ) 

+ 

𝑛𝛽∑
𝛽=1 

∫Γ𝑗 

𝑞 ∗ ( 𝐲 , 𝐱 ) 𝑢 ( 𝐱 𝑣 
𝑗 ( 𝛽) , 𝑡 ) 𝑁 

𝑣 
𝑗 ( 𝛽) ( 𝐱 ) 𝑑Γ( 𝐱) 

) 

= 

1 
𝜌𝑐 

∑
𝑗 

( 
𝑛𝛼∑
𝛼=1 

∫Γ𝑗 

𝑢 ∗ ( 𝐲 , 𝐱 ) 𝑞( 𝐱 𝑠 
𝑗 ( 𝛼) , 𝑡 ) 𝑁 

𝑠 
𝑗 ( 𝛼) ( 𝐱 ) 𝑑Γ( 𝐱) 

+ 

𝑛𝛽∑
𝛽=1 

∫Γ𝑗 

𝑢 ∗ ( 𝐲 , 𝐱 ) 𝑞( 𝐱 𝑣 
𝑗 ( 𝛽) , 𝑡 ) 𝑁 

𝑣 
𝑗 ( 𝛽) ( 𝐱 ) 𝑑Γ( 𝐱) 

) 

+ 

1 
𝜌𝑐 

∑
𝑖 

∑
𝑚 

∫Ω𝑖 

𝑢 ∗ ( 𝐲 , 𝐱 ) 𝑄 ( 𝐱 𝑚 , 𝑡 ) 𝑁 

𝑠 
𝑚 
( 𝐱 ) 𝑑Ω( 𝐱) 

− 

∑
𝑖 

∑
𝑚 

∫Ω𝑖 

𝑢 ∗ ( 𝐲 , 𝐱 ) ̇𝑢 ( 𝐱 𝑚 , 𝑡 ) 𝑁 

𝑠 
𝑚 
( 𝐱 ) 𝑑Ω( 𝐱) 

+ 

1 
𝜌𝑐 

∑
𝑖 

∑
𝑙 
∫Ω𝑖 

𝑢 ∗ ( 𝐲 , 𝐱 ) 𝑄 ( 𝐱 𝑙 , 𝑡 ) 𝑁 

𝑣 
𝑙 
( 𝐱 ) 𝑑Ω( 𝐱) 

− 

∑
𝑖 

∑
𝑙 
∫Ω𝑖 

𝑢 ∗ ( 𝐲 , 𝐱 ) ̇𝑢 ( 𝐱 𝑙 , 𝑡 ) 𝑁 

𝑣 
𝑙 
( 𝐱 ) 𝑑Ω( 𝐱) (15) 

Then we collocate the BIEs at every source node on the boundary,
ndthe matrix form of the systems is expressed as: 

𝐮 = 𝐆𝐪 + 𝐒𝐐 − 𝐃 ̇𝐮 (16)

In order to make the derivation process lucid and agreed, we de-
ompose the H and G in Eq. (16) according to the boundary conditions,
78 
ne has: 

 𝐇 

𝑠𝑠 
𝑑𝑑 

𝐇 

𝑠𝑠 
𝑑𝑛 

𝐇 

𝑠𝑣 
𝑑𝑑 

𝐇 

𝑠𝑣 
𝑑𝑛 

𝐇 

𝑠𝑠 
𝑛𝑑 

𝐇 

𝑠𝑠 
𝑛𝑛 

𝐇 

𝑠𝑣 
𝑛𝑑 

𝐇 

𝑠𝑣 
𝑛𝑛 

] ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

�̄� 𝑠 
𝑑 

𝐮 𝑠 
𝑛 

�̄� 𝑣 
𝑑 

𝐮 𝑣 
𝑛 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
= 

[ 𝐆 

𝑠𝑠 
𝑑𝑑 

𝐆 

𝑠𝑠 
𝑑𝑛 

𝐆 

𝑠𝑣 
𝑑𝑑 

𝐆 

𝑠𝑣 
𝑑𝑛 

𝐆 

𝑠𝑠 
𝑛𝑑 

𝐆 

𝑠𝑠 
𝑛𝑛 

𝐆 

𝑠𝑣 
𝑛𝑑 

𝐆 

𝑠𝑣 
𝑛𝑛 

] ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

𝐪 𝑠 
𝑑 

�̄� 𝑠 
𝑛 

𝐪 𝑣 
𝑑 

�̄� 𝑣 
𝑛 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
+ 

[
𝐒 
]
BD 
{
𝐐 D 
}
− 

[
𝐃 

𝑠𝑠 𝐃 

𝑠𝑣 
]
BD 

{ 

�̇� 𝑠 D 
�̇� 𝑣 D 

}

(17) 

here the subscripts d, n of the submatrices H and G represent the
irichlet, Neumann boundary conditions, respectively, and the super-

cripts s, v denote the source node, virtual node. �̄� and 𝑞 are known po-
entials and fluxes. B, D stand for the number of the boundary source
oints and the number of the points inside the considered domain,
espectively. 

The unknown vectors u 

v , q 

v and �̇� 𝑣 D of virtual points is calculated by
he MLS approximation. As a result, u 

v , q 

v and �̇� 𝑣 D can be expressed as
ollows: 

 

𝑣 
𝑛 
= 𝚿𝑣𝑠 

𝑛𝑛 
𝐮 𝑠 
𝑛 

 

𝑣 
𝑑 
= 𝚯𝑣𝑠 

𝑑𝑑 
𝐪 𝑠 
𝑑 

̇
 

𝑣 
D = 𝚽𝑣𝑠 �̇� 𝑠 D 

(18) 

here 𝚿𝑣𝑠 
𝑛𝑛 

, 𝚯𝑣𝑠 
𝑑𝑑 

and 𝚽vs are shape function matrices acquired by the MLS
pproximation (see Section 2.3 ). 

Substituting the approximations for 𝐮 𝑣 
𝑛 
and 𝐪 𝑣 

𝑑 
into Eq. (17) using

q. (18) , one gets: 

 

𝐇 

𝑠𝑠 

𝑑𝑑 
𝐇 

𝑠𝑠 

𝑑𝑛 
𝐇 

𝑠𝑣 
𝑑𝑑 

𝐇 

𝑠𝑠 

𝑛𝑑 
𝐇 

𝑠𝑠 

𝑛𝑛 
𝐇 

𝑠𝑣 
𝑛𝑑 

] ⎧ ⎪ ⎨ ⎪ ⎩ 
�̄� 𝑠 
𝑑 

𝐮 𝑠 
𝑛 

�̄� 𝑣 
𝑑 

⎫ ⎪ ⎬ ⎪ ⎭ 
= 

[ 
𝐆 

𝑠𝑠 

𝑑𝑑 
𝐆 

𝑠𝑠 

𝑑𝑛 
𝐆 

𝑠𝑣 
𝑑𝑛 

𝐆 

𝑠𝑠 

𝑛𝑑 
𝐆 

𝑠𝑠 

𝑛𝑛 
𝐆 

𝑠𝑣 
𝑛𝑛 

] ⎧ ⎪ ⎨ ⎪ ⎩ 
𝐪 𝑠 
𝑑 

�̄� 𝑠 
𝑛 

�̄� 𝑣 
𝑛 

⎫ ⎪ ⎬ ⎪ ⎭ + 

[
𝐒 
]
BD 
{
𝐐 D 
}
− 

[
�̄� 

]
BD 
{
�̇� 𝑠 D 
}

(19) 

n which 

 

𝐇 

𝑠𝑠 

𝑑𝑑 
𝐇 

𝑠𝑠 

𝑑𝑛 
𝐇 

𝑠𝑣 
𝑑𝑑 

𝐇 

𝑠𝑠 

𝑛𝑑 
𝐇 

𝑠𝑠 

𝑛𝑛 
𝐇 

𝑠𝑣 
𝑛𝑑 

] 
= 

[ 
𝐇 

𝑠𝑠 
𝑑𝑑 

𝐇 

𝑠𝑠 
𝑑𝑛 

𝐇 

𝑠𝑣 
𝑑𝑑 

𝐇 

𝑠𝑠 
𝑛𝑑 

𝐇 

𝑠𝑠 
𝑛𝑛 

𝐇 

𝑠𝑣 
𝑛𝑑 

] 
+ 

[ 
𝟎 𝐇 

𝑠𝑣 
𝑑𝑛 
𝚿𝑣𝑠 

𝑛𝑛 
𝟎 

𝟎 𝐇 

𝑠𝑣 
𝑛𝑛 
𝚿𝑣𝑠 

𝑛𝑛 
𝟎 

] 
(20) 

 

𝐆 

𝑠𝑠 

𝑑𝑑 
𝐆 

𝑠𝑠 

𝑑𝑛 
𝐆 

𝑠𝑣 
𝑑𝑛 

𝐆 

𝑠𝑠 

𝑛𝑑 
𝐆 

𝑠𝑠 

𝑛𝑛 
𝐆 

𝑠𝑣 
𝑛𝑛 

] 
= 

[ 
𝐆 

𝑠𝑠 
𝑑𝑑 

𝐆 

𝑠𝑠 
𝑑𝑛 

𝐆 

𝑠𝑣 
𝑑𝑛 

𝐆 

𝑠𝑠 
𝑛𝑑 

𝐆 

𝑠𝑠 
𝑛𝑛 

𝐆 

𝑠𝑣 
𝑛𝑛 

] 
+ 

[ 
𝐆 

𝑠𝑠 
𝑑𝑑 
𝚯𝑣𝑠 

𝑑𝑑 
𝟎 𝟎 

𝐆 

𝑠𝑠 
𝑛𝑑 
𝚯𝑣𝑠 

𝑑𝑑 
𝟎 𝟎 

] 
(21) 

�̄� 

]
BD = 

[
𝐃 

𝑠𝑠 + 𝐃 

𝑠𝑣 𝚽𝑣𝑠 
]
BD (22) 

By moving the known physical quantities to the right-hand side and
nknown physical quantities to the left-hand side, finally, the discretized
orm of the BIE for transient heat transfer problem can be transformed
nto the following form: 
 

𝐪 𝑠 
𝑑 

𝐮 𝑠 
𝑛 

} 

= 𝐀 

[ 
− ̄𝐇 

𝑠𝑠 
𝑑𝑑 

�̄� 

𝑠𝑠 
𝑑𝑛 

− ̄𝐇 

𝑠𝑠 
𝑛𝑑 

�̄� 

𝑠𝑠 
𝑛𝑛 

] 
BB 

{ 

�̄� 𝑠 
𝑑 

�̄� 𝑠 
𝑛 

} 

+ 𝐀 

[ 
− 𝐇 

𝑠𝑣 
𝑑𝑑 

𝐆 

𝑠𝑣 
𝑑𝑛 

− 𝐇 

𝑠𝑣 
𝑛𝑑 

𝐆 

𝑠𝑣 
𝑛𝑛 

] { 

�̄� 𝑣 
𝑑 

�̄� 𝑣 
𝑛 

} 

+ 𝐀 

[
𝐒 
]
BD 
{
𝐐 D 
}
− 𝐀 

[
�̄� 

]
BD 
{
�̇� D 
}

 = 

[ 
− ̄𝐆 

𝑠𝑠 
𝑑𝑑 

�̄� 

𝑠𝑠 
𝑑𝑛 

− ̄𝐆 

𝑠𝑠 
𝑛𝑑 

�̄� 

𝑠𝑠 
𝑛𝑛 

] −1 
(23) 
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Fig. 3. Dirichlet problem with square: geometric model and conditions. 
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(  

(  

d  

a  

e

𝑢  
Then we collocate the BIEs at every source pointthat locates inside
he considered domain, and the matrix form of the systems can be
xpressed as: 

𝐇 

𝑠𝑠 
𝐷𝑑 

𝐇 

𝑠𝑠 
𝐷𝑛 

𝐇 

𝑠𝑣 
𝐷𝑑 

𝐇 

𝑠𝑣 
𝐷𝑛 

]⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

�̄� 𝑠 
𝑑 

𝐮 𝑠 
𝑛 

�̄� 𝑣 
𝑑 

𝐮 𝑣 
𝑛 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
− 

[
𝐆 

𝑠𝑠 
𝐷𝑑 

𝐆 

𝑠𝑠 
𝐷𝑛 

𝐆 

𝑠𝑣 
𝐷𝑑 

𝐆 

𝑠𝑣 
𝐷𝑛 

]⎧ ⎪ ⎨ ⎪ ⎩ 
𝐪 𝑠 
𝑑 

�̄� 𝑠 
𝑛 

𝐪 𝑣 
𝑑 

�̄� 𝑣 
𝑛 

⎫ ⎪ ⎬ ⎪ ⎭ + 𝐮 D 

= 

[
𝐒 
]
DD 

{
𝐐 D 
}
− 

[
𝐃 

𝑠𝑠 𝐃 

𝑠𝑣 
]
DD 

{ 

�̇� 𝑠 D 
�̇� 𝑣 D 

} 

(24) 

Similarly, substituting the approximations for 𝐮 𝑣 
𝑛 
, 𝐪 𝑣 

𝑑 
and the de-

cribed boundary conditions �̄� 𝑣 
𝑑 
, �̄� 𝑣 

𝑛 
of virtual nodes into the Eq. (24) ,

e will have the following equation: 

− ̄𝐆 

𝑠𝑠 
𝑑 

�̄� 

𝑠𝑠 
𝑛 

]
DB 

{ 

𝐪 𝑠 
𝑑 

𝐮 𝑠 
𝑛 

} 

= 

[
− ̄𝐇 

𝑠𝑠 
𝑑 

�̄� 

𝑠𝑠 
𝑛 

]
DB 

{ 

�̄� 𝑠 
𝑑 

�̄� 𝑠 
𝑛 

} 

+ 

[
− 𝐇 

𝑠𝑐 
𝑑 

𝐆 

𝑠𝑐 
𝑛 

]{ 

�̄� 𝑣 
𝑑 

�̄� 𝑣 
𝑛 

} 

+ 

[
𝐒 
]
DD 
{
𝐐 D 
}

− 

[
�̄� 

]
DD 
{
�̇� D 
}
− 𝐮 D (25) 

The heat source inside the considered domain is omitted for facilita-
ion, then combining Eq. (23) and Eq. (25) , one gets: 

− 

[
�̄� 

]
DD + 

[
− ̄𝐆 

𝑠𝑠 
𝑑 

�̄� 

𝑠𝑠 
𝑛 

]
DB 𝐀 

[
�̄� 

]
BD 

){
�̇� D 
}

= 𝐮 D + 

( [
�̄� 

𝑠𝑠 
𝑑 

− ̄𝐆 

𝑠𝑠 
𝑛 

]
DB + 

[
− ̄𝐆 

𝑠𝑠 
𝑑 

�̄� 

𝑠𝑠 
𝑛 

]
DB 𝐀 

[ 
− ̄𝐇 

𝑠𝑠 
𝑑𝑑 

�̄� 

𝑠𝑠 
𝑑𝑛 

− ̄𝐇 

𝑠𝑠 
𝑛𝑑 

�̄� 

𝑠𝑠 
𝑛𝑛 

] 
BB 

) { 

�̄� 𝑠 
𝑑 

�̄� 𝑠 
𝑛 

} 

+ 

( [
𝐇 

𝑠𝑣 
𝑑 

− 𝐆 

𝑠𝑣 
𝑛 

]
DB + 

[
− ̄𝐆 

𝑠𝑠 
𝑑 

�̄� 

𝑠𝑠 
𝑛 

]
DB 𝐀 

[ 
− 𝐇 

𝑠𝑣 
𝑑𝑑 

𝐆 

𝑠𝑣 
𝑑𝑛 

− 𝐇 

𝑠𝑣 
𝑛𝑑 

𝐆 

𝑠𝑣 
𝑛𝑛 

] 
BB 

) { 

�̄� 𝑣 
𝑑 

�̄� 𝑣 
𝑛 

}
(26) 

For short, we further denote: 

𝐏 = − 

[
�̄� 

]
DD + 

[
− ̄𝐆 

𝑠𝑠 
𝑑 

�̄� 

𝑠𝑠 
𝑛 

]
DB 𝐀 

[
�̄� 

]
BD 

 = 𝐏 −1 
( [

�̄� 

𝑠𝑠 
𝑑 

− ̄𝐆 

𝑠𝑠 
𝑛 

]
DB + 

[
− ̄𝐆 

𝑠𝑠 
𝑑 

�̄� 

𝑠𝑠 
𝑛 

]
DB 𝐀 

[ 
− ̄𝐇 

𝑠𝑠 
𝑑𝑑 

�̄� 

𝑠𝑠 
𝑑𝑛 

− ̄𝐇 

𝑠𝑠 
𝑛𝑑 

�̄� 

𝑠𝑠 
𝑛𝑛 

] 
BB 

) { 

�̄� 𝑠 
𝑑 

�̄� 𝑠 
𝑛 

} 

+ 𝐏 −1 
( [

𝐇 

𝑠𝑣 
𝑑 

− 𝐆 

𝑠𝑣 
𝑛 

]
+ 

[
− ̄𝐆 

𝑠𝑠 
𝑑 

�̄� 

𝑠𝑠 
𝑛 

]
DB 𝐀 

[ 
− 𝐇 

𝑠𝑣 
𝑑𝑑 

𝐆 

𝑠𝑣 
𝑑𝑛 

− 𝐇 

𝑠𝑣 
𝑛𝑑 

𝐆 

𝑠𝑣 
𝑛𝑛 

] ) { 

�̄� 𝑣 
𝑑 

�̄� 𝑣 
𝑛 

} 

(27) 

Eq. (26) can be simplified into: 

̇
 D ( 𝑡 ) = 𝐏 −1 𝐮 D ( 𝑡 ) + 𝐁 ( 𝑡 ) (28)

Eq. (28) is first-order ordinary differential equation. The solution
rocess is introduced thoroughly in the following section. 

. The precise integration method 

The complete solution of Eq. (28) is expressed as: 

 D = 𝑒 𝐏 
−1 ( 𝑡 − 𝑡 0 ) 𝐮 D0 + ∫

𝑡 

𝑡 0 

𝑒 𝐏 
−1 ( 𝑡 − 𝜏) 𝐁 ( 𝜏) 𝑑𝜏 (29)

In which 

 

𝐏 −1 ( 𝑡 − 𝑡 0 ) = 

∑
𝑛 

1 
𝑛 ! 
(
𝐏 −1 
)𝑛 (

𝑡 − 𝑡 0 
)𝑛 

(30)

Here, we call Eq. (30) the matrix exponential function. A scheme sim-
lar to quasi-initial condition method is employed to solve Eq. (29) for
he purpose of reducing computation time: 

 D 𝑘 = 𝑒 
(
𝐏 −1 
)
Δ𝑡 𝐮 D ( 𝑘 −1 ) + ∫

𝑡 𝑘 

𝑡 𝑘 −1 

𝑒 
(
𝐏 −1 
)
( 𝑡 𝑘 − 𝜏) 𝐁 ( 𝜏) 𝑑𝜏 (31)

here Δt = t k − t k − 1 denotes the time step length. In general, we assume
hat the vector B ( t ) determined by the boundary condition, is steady and
79 
quals to B k in the k-th time step. That is to say, the integrand vector B ( t )
s approximated by time constant interpolation. As a result, Eq. (31) is
xpressed as: 

 D 𝑘 = 𝑒 Δ𝑡 ( 𝐏 ) −1 𝐮 D ( 𝑘 −1 ) + 

(
( 𝐏 ) −1 
)−1 ( 𝑒 Δ𝑡 ( 𝐏 ) −1 − 𝐈 ) ( 𝐏 ) −1 

([
�̄� 

𝑠𝑠 
𝑑 

− ̄𝐆 

𝑠𝑠 
𝑛 

]
DB 

+ 

[
− ̄𝐆 

𝑠𝑠 
𝑑 

�̄� 

𝑠𝑠 
𝑛 

]
DB 𝐀 

[ 
− ̄𝐇 

𝑠𝑠 
𝑑𝑑 

�̄� 

𝑠𝑠 
𝑑𝑛 

− ̄𝐇 

𝑠𝑠 
𝑛𝑑 

�̄� 

𝑠𝑠 
𝑛𝑛 

] 
BB 

) { 

�̄� 𝑠 
𝑑 

�̄� 𝑠 
𝑛 

} 

𝑘 

+ 

(
( 𝐏 ) −1 
)−1 ( 𝑒 Δ𝑡 ( 𝐏 ) −1 − 𝐈 ) ( 𝐏 ) −1 

([
𝐇 

𝑠𝑣 
𝑑 

− 𝐆 

𝑠𝑣 
𝑛 

]
DB + 

[
− ̄𝐆 

𝑠𝑠 
𝑑 

�̄� 

𝑠𝑠 
𝑛 

]
DB 

×𝐀 

[ 
− 𝐇 

𝑠𝑣 
𝑑𝑑 

𝐆 

𝑠𝑣 
𝑑𝑛 

− 𝐇 

𝑠𝑣 
𝑛𝑑 

𝐆 

𝑠𝑣 
𝑛𝑛 

] 
BB 

) { 

�̄� 𝑣 
𝑑 

�̄� 𝑣 
𝑛 

} 

𝑘 

(32) 

. Numerical examples 

Three numerical examples that possess analytical solutions and one
ngineering application are used to illustrate the stability, accuracy and
onvergence of the proposed DiPIBFM for solving 2-D transient heat
onduction problems. 

The relative error is used to study error estimation and convergence
f the proposed method and defined as follows: 

𝑟𝑟𝑜𝑟 = 

1 ||𝑣 ( 𝑒 ) ||max 

√ √ √ √ 

1 
𝑀 

𝑀 ∑
𝑖 =1 

[
𝑣 
( 𝑒 ) 
𝑖 

− 𝑣 
( 𝑛 ) 
𝑖 

]2 
(33)

here| v ( e ) | max is the maximum value of the exact solution over M sam-
le points, and superscripts e and n denote the exact and numerical so-
utions, respectively. 

.1. Example 1 

The first example is a problem with Dirichlet boundary conditions
BCs) on a square region and the size information is depicted in Fig. 3
with length units in m). The heat conductivity k , heat capacity c and
ensity 𝜌 of the material is 1 W/m • °C, 1 J/kg • °C and 1 kg/m 

2 . The
nalytical solution of temperature u corresponding to this problem is
xpressed as: 

 ( 𝑥, 𝑦, 𝑡 ) = 𝑥 3 − 𝑦 2 + 2 𝑡 (3 𝑥 − 1) (34)
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Fig. 4. Comparison of convergence for internal source nodes’ u within the time 

interval [0 s, 0.01 s]. 

Fig. 5. Relative errors of u inside the considered domain along time within the 

time interval [0 s, 50 s]. 
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Table 1 

CPU time of one time step. 

Dual0.001 10.096s 

Trad0.001 9.398s 
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The boundary condition u based on the above solution is specified
long alledges. And only the 1-th time step’s initial temperatures inside
he considered domain are specified according to the above analytical
olution, the other time step’s initial potentials inside the domain are
alculated by Eq. (26) . It can be seen from Fig. 4 , five sets of source
oints are employed on all edges, n = 3, 6, 9, 12, and 24. The number of
onconforming quadratic triangular elements inside the square and the
nternal source nodes is 62 and 372, respectively. Only one time step
amely 0.01 s is applied in Fig. 4 , and the time interval is [0 s, 0.01 s].
ig. 4 shows the relative error of internal source nodes’ computed tem-
erature with employing these five sets of boundary source nodes. 

Then the variation of temperatures inside the considered domain
ithin the time interval [0 s, 50 s] is considered. Six sets of time steps
re employed in this example, △t = 0.001 s, 0.2 s, 0.5 s, 1.0 s, 2.5 s,
nd 5.0 s. Fig. 5 demonstrates the comparisons of accuracy for inter-
al source nodes’ computed temperature with employing these six sets
80 
f time steps. As illustrated in Figs. 5 , when △t = 0.001 s, the pro-
osed method is two orders of magnitude higher than that of the tradi-
ional method. However, for other larger time step length, the advan-
age of our method is not obvious. The reasons are as follows: From
qs. (15) and (31) , we can see that the variation of physical variables
ith respect to space is interpolated by the dual interpolation elements,
hile the interpolation in time can be considered as constant interpo-

ation. Thus, the relative error brought by interpolation in time will be
maller when the time step length approaches to zero, and the advan-
age of our proposed method, which has higher interpolation accuracy
n space, will be shown, and Table 1 demonstrates the computer time
onsumed by DiPIBFM and PIBFM, it shows the efficiency of our new
ethod. 

.2. Example 2 

Our second example is ahollow square with mixed boundary condi-
ions. The dimensions of this structure are shown in Fig. 6 (a). The con-
uctivity k , heat capacity c and density 𝜌 of the material is 1 W/m • °C,
 J/kg • °C and 1 kg/m 

2 . And analytical solution for the 2-D transient
eat transfer problem is selected as: 

 ( 𝑥, 𝑦, 𝑡 ) = 𝑥 2 + 2 𝑦 2 + 6 𝑡 (35)

The Dirichlet boundary conditions are specified on the circle and
eumann boundary conditions are specified on all outer straight edges
orresponding to the above analytical solution (see Fig. 6 (b)). In this
mplementation, 176 discontinuous quadratic triangular elements, 63
oundary source nodes, 1056 internal source nodes are employed. The
ime interval of the variation of temperatures is [0 s, 50 s]. And six sets
f time steps, △t = 0.005 s, 0.01 s, 0.2 s, 0.5 s, 1.0 s, and 2.5 s, are
mployed to demonstrate the convergence and stability of our proposed
ethod along time. 

In Fig. 7 , we can easily find that the numerical results of physical
ariables u at internal source points convergent stably to analytical so-
ution as the time step length becomes smaller and smaller. Since the
3 elements (see Section 2.1 ) were used in our proposed method, it
chieves higher accuracy and faster convergence rates for the mixed
oundary condition problem. 

.3. Example 3 

In the third example, to testify the power of our proposed method,
e concern a square thattakes the area [0 mm, 6 mm] × [0 mm, 6 mm]
ith the following boundary and initial conditions (see Fig. 8 ). The con-
uctivity k , heat capacity c and density 𝜌 of the material is 1 W/m • °C,
 J/kg • °C and 1 kg/m 

2 . The analytical solution used is defined as: 

 ( 𝑥, 𝑦, 𝑡 ) = 

∞∑
𝑛 =1 

∞∑
𝑗=1 

𝐴 𝑛 sin 
𝑛𝜋𝑥 

6 
sin 𝑗𝜋𝑦 

6 
exp 
[ 
− 

( 
𝑛 2 𝜋2 

36 
+ 

𝑗 2 𝜋2 

36 

) 
𝑡 

] 

≈
100 ∑
𝑛 =1 

100 ∑
𝑗=1 

𝐴 𝑛 sin 
𝑛𝜋𝑥 

6 
sin 𝑗𝜋𝑦 

6 
exp 
[ 
− 

( 
𝑛 2 𝜋2 

36 
+ 

𝑗 2 𝜋2 

36 

) 
𝑡 

] (36) 

here 

 𝑛 = 

120 
𝑛𝑗 𝜋2 

[
( −1 ) 𝑛 − 1 

][
( −1 ) 𝑗 − 1 

]
(37) 

In this implementation, 62 discontinuous quadratic triangular ele-
ents, 36 boundary nodes, 372 domain nodes are employed. The time

nterval of the variation of temperatures is [0 s, 9.6 s]. And five sets
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Fig. 6. Mixed problem on hollow square: (a) geometric model and (b) boundary conditions. 

Fig. 7. Relative errors of u inside the considered domain along time within the 

time interval [0 s, 50 s]. 

Table 2 

Coordinates of sample nodes. 

Nodes Location 

P1 (0.19509, 5.500965) 

P2 (3.50006, 3.013105) 

o  

0  

i  

s  

i  

s  

p  

n  

i

Fig. 8. Mixed problem with square: geometric model and conditions. 

Table 3 

Temperatures of P1. 

Time (s) Analytical 

solution 

△t = 0.001 △t = 0.1 △t = 0.2 △t = 0.4 △t = 0.8 

0.8 1.12810 1.12676 1.12676 1.12676 1.12676 1.12676 

1.6 0.56353 0.56332 0.56332 0.56332 0.56332 0.56332 

2.4 0.34701 0.34684 0.34684 0.34684 0.34684 0.34684 

3.2 0.22198 0.22187 0.22187 0.22187 0.22187 0.22187 

4.0 0.14296 0.14290 0.14290 0.14290 0.14290 0.14290 

4.8 0.09217 0.09215 0.09215 0.09215 0.09215 0.09215 

5.6 0.05944 0.05943 0.05943 0.05943 0.05943 0.05943 

6.4 0.03833 0.03833 0.03833 0.03833 0.03833 0.03833 

7.2 0.02472 0.02473 0.02473 0.02473 0.02473 0.02473 

8.0 0.01594 0.01595 0.01595 0.01595 0.01595 0.01595 

8.8 0.01028 0.01029 0.01029 0.01029 0.01029 0.01029 

9.6 0.00663 0.00663 0.00663 0.00663 0.00663 0.00663 
f time steps are employed in this example, △t = 0.001 s, 0.1 s, 0.2 s,
.4 s, 0.8 s. The temperature variation history at 2 internal source nodes
nside the considered domain namely P1, P2 the location of which are
hown in Table 2 is concerned, for the purpose of studying the stabil-
ty and accuracy of our proposed method distinctly. The numerical re-
ults of sample nodes are listed in Table 3 and Table 4 and the com-
uted physical variables u (shown as solid dots) at these two sample
odes are compared with that in analytical solution (shown as lines)
n Fig. 9 . 
81 
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Fig. 9. Comparison between numerical results and exact solutions. 
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Table 4 

Temperatures of P2. 

Time (s) Exact 

solution 

△t = 0.001 △t = 0.1 △t = 0.2 △t = 0.4 △t = 0.8 

0.8 27.38134 27.37102 27.37102 27.37102 27.37102 27.37102 

1.6 19.20145 19.18873 19.18873 19.18873 19.18873 19.18873 

2.4 12.56216 12.55760 12.55760 12.55760 12.55760 12.55760 

3.2 8.12148 8.12021 8.12021 8.12021 8.12021 8.12021 

4.0 5.23984 5.23986 5.23986 5.23986 5.23986 5.23986 

4.8 3.37946 3.37997 3.37997 3.37997 3.37997 3.37997 

5.6 2.17947 2.18011 2.18011 2.18011 2.18011 2.18011 

6.4 1.40556 1.40617 1.40617 1.40617 1.40617 1.40617 

7.2 0.90645 0.90698 0.90698 0.90698 0.90698 0.90698 

8.0 0.58458 0.58500 0.58500 0.58500 0.58500 0.58500 

8.8 0.37700 0.37733 0.37733 0.37733 0.37733 0.37733 

9.6 0.24313 0.24337 0.24337 0.24337 0.24337 0.24337 
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From Table 3 , Table 4 and Fig. 9 , it is very interesting that nearly
he same results can be obtained by employing different time steps, the
eason is as follows: The Dirichlet boundary condition, which is equal to
ero, is time-independent in this example with each time step. The rela-
ive error is mainly brought by the interpolation of unknown boundary
ormal fluxes q and the interpolation of first derivatives of the u ( x , t )
ersus time variable t . This example testifies the DiPIBFM has high rates
f convergence. The agreement between numerical results and analyti-
al solution is good. 
Fig. 10. Transient heat conduction problem on a da

82 
.4. Example 4 

Our forth example is a transient heat transfer problem on a real dam
tructure (see Fig. 10 ). The length of the contact surface between the
am and the foundation is 49 m. The real dam’s left side is 65 m in
eight, adjoining the upstream, and the dam’s right side is exposed to
ir. Besides, the upstream water level is the same as the height of the
am’s left side. The conductivity k , heat capacity c and density 𝜌 of the
aterial is 9.75 kJ/m • h • °C, 0.888 kJ/kg • °C and 2539 kg/m 

2 . 
The bed rock’s temperature is 0 °C and the air temperature is 10.3 °C

see Fig. 8 ). The initial condition of the real dam is 27 °C and the water
eeps a constant temperature which is equal to 13.4 °C. 

As observed in Fig. 11 , Fig. 12 and Fig. 13 , the temperature distribu-
ion over the considered domain along time of our method convergents
tably to temperature cloud picture of FEM. The results of DiPIBFM is
alculated by our proposed method using 479 discontinuous linear tri-
ngular elements (1437 domain nodes) and 69 boundary nodes,. The
m: (a) geometry and (b) boundary conditions. 
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Fig. 11. Potential distribution ( t = 1 year) computed by: (a) DiPIBFM and (b) FEM. 

Fig. 12. Potential distribution ( t = 3 year) computed by: (a) DiPIBFM and (b) FEM. 

Fig. 13. Potential distribution ( t = 5 year) computed by: (a) DiPIBFM and (b) FEM. 

83 
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umerical result calculated by the FEM with 177,501 source pointsis
sed as reference solution. 

. Conclusions 

In this paper, the precise integration method which has broader ap-
lication prospect in many fields, such as heat transfer problems and
tructure dynamic problems etc., has been enhanced by coupling the
ual interpolation boundary face method, and a new combined algo-
ithm (DiPIBFM) is presented for solving two-dimensional transient heat
onduction problems. Furthermore, based on the advantages of PIM and
iBFM, the DiPIBFM can achieve higher accuracy and is better suitable

o solve structural dynamics with applying smaller time step. As a result,
hen compared with the conventional precise integration BEM, the DiP-

BFM can approximate both conforming and nonconforming fields more
reely and precisely. All presented numerical examples verify the stabil-
ty and accuracy of our method when solving transient heat conduction
roblems with different types of boundary condition. 

This research just studies the performance of the proposed method
hen applying to 2D heat transfer problem. Extensions of the DiPIBFM

o solve other time domain problems are possible and seductive, be-
ause of the advantages of DiPIBFM: (i) it uses the time-independent
undamental solution, thus, the accuracy and the stability of integra-
ion is higher than methods that implement with the time-dependent
undamental solution; (ii) it improves the interpolation precision and
liminates the geometry error, it also has the potential to increase the
ccuracy when it is applied to structural dynamics or other difficult tran-
ient problems. In future work, we plan to extend the range of applica-
ility of the method to the three-dimensional case. Work along this line
s underway. 
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